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SUMMARY  

Complex Data Analysis is a relatively new field that provides a range of methods for 
analysing complex/symbolic data, and can be defined as the extension of standard data 
analysis to more complex data tables. There are two steps in Complex or Symbolic Data 
Analysis: i) knowledge extraction from large databases as in Data Mining; and ii) 
application of new tools to the extracted knowledge in order to extend Data Mining to 
Knowledge Mining. The weighted generalised affinity coefficient appears to be an 
appropriate resemblance measure between elements (statistical data units or variables) in 
cases where we deal with complex data from large databases. In this work we apply two 
different processes to determine values of the weighted generalised affinity coefficient 
in the case where we are dealing with data units described by variables whose values are 
intervals of the real axis.  
We present one example concerned with real data (with a known structure) in the field 
of Biometry, in which objects are described by variables whose values are intervals, in 
order to illustrate the effectiveness of Ascendant Hierarchical Cluster Analysis based on 
the weighted generalised affinity coefficient and classical and/or probabilistic 
aggregation criteria. In this example, we applied a method of validation to identify the 
best partitions. 

Key words: Cluster Analysis, VL Methodology, Weighted Generalised Affinity 
Coefficient, Symbolic Data, Measures of Validation. 

1. Introduction 

Classical data analysis starts with a given number n of individuals (often termed 

objects, cases, etc.) characterized by p variables Y1, …, Yp. Each variable Yj 
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takes values in an observation space yj of possible levels, alternatives or 

numbers, and for each individual k the variable Yj takes just one single value 

Y j(k) from yj. which can be denoted by xkj. 

With the development of computer technology it is usual to record huge sets 

of data in large databases, so it is important to summarize these data in terms of 

their underlying concepts. These concepts can only be described by a more 

complex type of data, called symbolic data (Bock and Diday, 2000). 

In a symbolic data table the rows correspond to symbolic objects and the 

columns correspond to symbolic variables, which can take values as a single 

quantitative value, a single categorical value, a set of values or categories 

(multivalued variable), an interval, or a set of values with associated weights. 

Thus symbolic data tables may describe heterogeneous data, and their cells may 

contain data of different types that can be weighted and linked by logical rules 

and taxonomies (Bock and Diday, 2000). Thus, formally, a symbolic variable Y 

with domain (or range or observation space) y is a mapping E→B defined on 

a set E of statistical entities (individuals, classes, objects, …). Depending on the 

specification of B in terms of y, symbolic variables can be classified as (Bock 

and Diday, 2000): 

(i). classical single-valued if B=y. 

(ii). set-valued if ( ) ⊆aY y is a subset of  y. 

(iii).  interval if, for all ],[)(  , βα=∈ aYEa   is an interval of y, in the order 

established on y. 

(iv). multi-valued (categorical or quantitative) if set-valued with ( ) ⊆aY y  and 

EaaY ∈∀∞<      ,)( . 

(v). modal (probabilistic) with observation space y if, for each a ∈ E, Y(a)=πa is 

a non-negative measure on y, such as a frequency distribution, a probability 

distribution or a weighting. If πa is specified by a histogram, Y is called 

a histogram variable. Y is a (bar or) diagram variable if the observation 

space y is finite and πa is described by a bar diagram. 

Symbolic Data Analysis (SDA) is a relatively new field that provides 

a range of methods for analysing symbolic data, and can be defined as the 
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extension of standard data analysis to symbolic data tables (Bock and Diday, 

2000). There are two steps in Symbolic Data Analysis (SDA): i) knowledge 

extraction from large data bases as in Data Mining; and ii) application of new 

tools to the extracted knowledge in order to extend Data Mining to Knowledge 

Mining. The symbolic objects allow us to make a mathematical modelling of 

concepts and are used as input and as an explanatory output of an SDA.  

An important source of symbolic objects is provided by relational databases 

containing a set of individuals that are distributed into some groups.  DB2SO is 

the part of the Sodas software (Bock and Diday, 2000) which enables a user to 

build a set of assertions, one assertion for each group of individuals, from data 

stored in a relational database. The usual interaction between the user and 

DB2SO includes connection with a database and retrieval of individuals 

distributed into groups (symbolic objects) by means of a SQL query. On the 

other hand, the symbolic objects can be used to define queries from a database 

and for concept propagation between databases (Bock and Diday, 2000).  

In the case of data sets of (very) high dimension, one of the possible 

solutions for their analysis is to find clusters in these data. Cluster Analysis 

(classical and symbolic) aims to construct an appropriate classification either of 

the set E of data units or the set Y of variables, from one given data matrix 

(N×p). As in the classic case, the goal is to obtain homogeneous clusters of 

objects in a population Ω or E, such that objects of the same cluster present 

a high similarity and objects of different clusters present more dissimilarities. 

Some comparison measures between elements, e.g. Gower’s similarity 

coefficient (Gower, 1971), and the dissimilarity measures of Gowda and Diday 

(1991) allow us to apply Hierarchical Cluster Analysis to data of mixed types. 

However, its application is limited to data sets of small dimension. The majority 

of Cluster Analysis methods are either too complex to be applied to data sets of 

high dimension (e.g. hierarchical methods), or are implemented only for 

numerical data (e.g. the k-means method). 
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In Section 2 we describe two different processes for determining values of 

the weighted generalised affinity coefficient in the case where we deal with data 

units described by variables whose values are intervals of the real axis. 

In Section 3, we present the results of an example related to real data (with 

known structure), obtained using the AHCA of a symbolic data matrix whose 

symbolic objects are described by variables whose values are intervals of the 

real axis. In this example, we applied a method of validation to identify the best 

partitions. 

2. Weighted Generalised Affinity Coefficient in Symbolic Cluster 
Analysis 

Nicolau and Bacelar-Nicolau (1999) proposed the weighted generalised affinity 

coefficient for the case in which symbolic objects are described by p probability 

or frequency distribution vectors, or “some other data support which can be 

applied to this type of description, such as histograms and variables whose 

values are intervals of the real axis” (Nicolau and Bacelar-Nicolau, 1999; 

Bacelar-Nicolau, 2000, 2002). In particular, if the data units are described by 

variables whose values are intervals of the real axis, we can use the following 

processes: 

Process 1: Before calculation of the generalised affinity coefficient (for the case 

of symbolic data), an appropriate relative frequency distribution is associated 

with each of the intervals, thus obtaining a codification of the Symbolic Data 

Matrix by discretization of the variables of interval type. It is possible to effect 

this codification (Sousa, 2005) in the following way: 

Let A=[LinfA, LsupA] and B=[LinfB, LsupB] be two intervals with ranges, 

respectively AmplA and AmplB. The relative frequency distributions associated 

with the intervals A and B are obtained in the following way: 

i) Determination of I=[inters1, inters2] corresponding to the intersection of the 

intervals A and B; 
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ii)  Calculation of the frequency distributions of the interval A: Let ax1, ax2 

and ax3 be three auxiliary real variables and (freqA1, freqA2, freqA3) the 

relative frequency distribution associated with the interval A. 
 
If (LinfA=inters1) then ax1=0 and ax1=inters1-min(LinfA, LinfB) if not.  
freqA1=ax1/amplA 
ax2=inters2-inters1 
freqA2=ax2/amplA 
If (LsupA=inters2) then ax3=0 and ax3=max(LsupA, LsupB)-inters2 if not. 
freqA3=ax3/amplA;  
 

iii)  Calculation of the frequency distribution associated with interval B, 

according to the algorithm presented in ii). 

Once we have obtained the frequency distributions corresponding to the 

intervals A and B, the affinity coefficient is calculated as described in Nicolau 

and Bacelar-Nicolau (1999), considering that in the case of no intersection 

between the two intervals the value of the local affinity coefficient is 0. In the 

case of coincidence of the two intervals or the intersection being a single point, 

the value of the local affinity coefficient is 1. 

Process 2: Another process consists of working directly with the intervals, in 

the following way: Let a and b be two unconstrained Boolean symbolic objects 

(i.e. two symbolic Boolean objects with no logical dependencies between the 

variables), defined in the following way: 

[ ] [ ] [ ]pp AYAYAYa ∈∧∧∈∧∈= L2211 ; 

[ ] [ ] [ ]pp BYBYBYb ∈∧∧∈∧∈= L2211 , 

where each variable Yj takes values in the domain yj, and Aj, Bj are 

subsets of yj.  
De Carvalho (1994, 1996, 1998a, 1998b) suggests the calculation of the 

comparison function of each variable, Yj, on the basis of the agreement and 

disagreement indexes presented in Table 1, where  we have defined for each 

subset Vj ⊆ yj: 
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and c(Vj)= yj-V j is the complementary set of Vj in the domain yj. In particular, 

in this work we assume that the values of each variable are intervals of the real 

axis. 

Table 1.  De Carvalho’s agreement/disagreement indices 

 Agreement Disagreement Total 

Agreement ( )jj BA ∩= µα  ( )( )jj BcA ∩= µβ  ( )jAµ  

Disagreement ( )( )jj BAc ∩= µχ  ( ) ( )( )jj BcAc ∩= µδ  ( )( )jAcµ  

Total ( )jBµ  ( )( )jBcµ  µ(yj ) 

 
Table 2. Five possible comparison functions 

si Comparison function Range Property = 0 for =1 for 

s1 
χβα

α
++

 [0, 1] Metric Ak∩Bk=φ Ak=Bk 

s2 
χβα

α
++2

2  [0, 1] Semi metric Ak∩Bk=φ Ak=Bk 

s3 
( )χβα
α

++ 2
 [0, 1] Metric Ak∩Bk=φ Ak=Bk 

s4 









+
+

+ χα
α

βα
α

2

1  [0, 1] Semi metric Ak∩Bk=φ Ak=Bk 

s5 
( )( )χαβα

α
++

 [0, 1] Semi metric Ak∩Bk=φ Ak=Bk 

 

De Carvalho has proposed the comparison functions presented in Table 2, 

which are an extension of the similarity measures defined for classical binary 

variables. Note, in particular, that the function 5s  is the Ochiai coefficient 

(Anderberg, 1973), which coincides with the affinity coefficient in the case of 

binary variables (Nicolau and Bacelar-Nicolau, 1999; Bacelar-Nicolau, 2002). 
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From this point on, our approach differs from that of De Carvalho, essentially 

because instead of working with the corresponding dissimilarity function, id , 

for example, through the transformation: 51 sdi −= , we work with the 

similarity function, in this case, the measure s5. Thus, the similarity measure 

between the symbolic objects a and b is given by: 

( ) ( )jj

p

j
j BAswbas ,, 5

1
∑

=

= . 

Let E= {1, 2,..., N} be a set of N data units described by a set  {Y1,..., Yj,..., 

Yp} of p symbolic variables. The data units can be either simple elements (e.g. 

subjects, individuals) or subsets of objects in some population (e.g., subsamples 

of a sample, classes of a partition, subgroups of the population) (Bacelar-

Nicolau, 2000). 

Given a proximity matrix between symbolic objects, classifications of them 

can be obtained using classical agglomerative algorithms (Diday, 1988; Gowda 

and Diday, 1991, 1992), like Single Linkage (SL) and Complete Linkage (CL). 

In this approach, having obtained a proximity matrix between the elements of E, 

the classification is obtained without attention to the fact that the data are 

symbolic (Gordon, 1999). The clustering of symbolic data can be also based on 

probabilistic algorithms. In particular, the probabilistic approach of AHCA, 

called VL methodology (V for Validity, L for Linkage), can be used (Bacelar-

Nicolau, 2002; Sousa, 2005). The αR coefficient combined with the AVL, AV1, 

AVB and AVM methods (Bacelar-Nicolau, 1988; Nicolau, 1980; Nicolau and 

Bacelar-Nicolau, 1998) are good examples of this approach. 

3. Example: “Abalone Data”  

The data set analyzed is called “Abalone data” and contains 4177 cases of 

marine crustaceans, which are described by means of the nine attributes 

(Malerba et al., 2001) listed in Table 3. Initially, using the DB2S0 facility 

available in the  SODAS software, nine boolean symbolic objects were 

generated, each of which corresponds to an interval of values for the number of 
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rings of the crustaceans: A (1-3), B (4-6), C (7-9), D (10-12),  E (13-15), F (16-

18),  G (19-21), H (22-24), I (25-29). For each of the groups we considered 7 

symbolic variables (“Length” , “Diam.”, “Height”, “Whole”,  “Shucked”, 

“Viscera”, “Shell”)  of  interval type (see Table 4). 

 
Table 3. Attributes of the “Abalone” data set 

Attribute Name Data Type Unit Description 
Sex Nominal  M. F. I. (Infant) 
Length Continuous mm Longest shell measurement 
Diameter Continuous mm Perpendicular to length 
Height Continuous mm Measured with meat in shell 
Whole weight Continuous grams Weight of the whole abalone 
Shucked weight Continuous grams Weight of the meat 
Viscera weight Continuous grams  Gut weight after bleeding 
Shell weight Continuous grams Weight of the dried shell 
Rings Integer  Number of rings 

 
Table 4. Symbolic data matrix 

 Sex Length Diam. Height Whole Shucked Viscera Shell 
A M(0.18), 

I(0.82) 
[0.08: 
0.24] 

[0.05: 
0.17] 

[0.01: 
0.06] 

[0.00: 
0.07] 

[0.00: 
0.03] 

[0.00: 
0.01] 

[0.00: 
0.02] 

B M(0.10), 
F(0.05), 
I(0.85) 

[0.13: 
0.66] 

[0.09: 
0.47] 

[0.00: 
0.18] 

[0.01: 
1.37] 

[0.00: 
0.64] 

[0.00: 
0.29] 

[0.00: 
0.35] 

C M(0.32), 
F(0.25), 
I(0.43) 

[0.20: 
0.75] 

[0.16: 
0.58] 

[0.00: 
1.13] 

[0.04: 
2.33] 

[0.02: 
1.25] 

[0.01: 
0.54] 

[0.02: 
0.56] 

D M(0.46), 
F(0.41), 
I(0.13) 

[0.29: 
0.78] 

[0.22: 
0.63] 

[0.06: 
0.51] 

[0.12: 
2.78] 

[0.04: 
1.49] 

[0.02: 
0.76] 

[0.04: 
0.73] 

E M(0.46), 
F(0.43), 
I(0.11) 

[0.32: 
0.81] 

[0.25: 
0.65] 

[0.08: 
0.25] 

[0.16: 
2.55] 

[0.06: 
1.35] 

[0.03: 
0.57] 

[0.05: 
0.80] 

F M(0.44), 
F(0.45), 
I(0.11) 

[0.40: 
0.77] 

[0.31: 
0.60] 

[0.10: 
0.24] 

[0.35: 
2.83] 

[0.11: 
1.15] 

[0.06: 
0.48] 

[0.12: 
1.00] 

G M(0.46), 
F(0.47), 
I(0.07) 

[0.45: 
0.74] 

[0.35: 
0.59] 

[0.12: 
0.23] 

[0.41: 
2.13] 

[0.11: 
0.87] 

[0.07: 
0.49] 

[0.16: 
0.85] 

H M(0.41), 
F(0.59) 

[0.45: 
0.80] 

[0.38: 
0.63] 

[0.14: 
0.22] 

[0.64: 
2.53] 

[0.16: 
0.93] 

[0.11: 
0.59] 

[0.24: 
0.71] 

I M(0.40), 
F(0.60) 

[0.55: 
0.70] 

[0.47: 
0.58] 

[0.18: 
0.22] 

[1.06: 
2.18] 

[0.32: 
0.75] 

[0.19: 
0.39] 

[0.38: 
0.88] 
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Two abalones with the same number of rings should also present similar 

values for the attributes listed in Table 3. On the basis of this assumption, we 

hope that “the degree of dissimilarity between crustaceans computed on the 

independent attributes will actually be proportional to the dissimilarity in the 

dependent attribute (i.e., difference in the number of rings)” (Malerba et al., 

2001). This property is called “monotonic increasing dissimilarity” (shortly, 

MID property).   
After determining the frequency distributions corresponding to the intervals 

of the initial matrix of data, according to process 1, we used the weighted 

generalised affinity coefficient (Nicolau and Bacelar-Nicolau, 1999; Bacelar-

Nicolau, 2002) with pjj’ =1/p if j=j’ and pjj’ =0 if j≠j’ (Nicolau and Bacelar-

Nicolau, 1999). This measure of comparison between elements has been 

combined with classical, SL and CL, and probabilistic aggregation criteria, 

AVL, AV1 and AVB (Bacelar-Nicolau, 1988; Nicolau, 1980; Nicolau and 

Bacelar-Nicolau, 1998). 

Figure 2 contains the graph of the values of the indexes STAT, DIF, 

P(I2mod,∑), GK and GKr (Sousa, 2005) for the partitions provided by the AV1 

method. Figure 1 presents the corresponding dendrogram.  

 
                   levels    1  to  8 
A                     --*--------------------*                                       
                                             |                                       
B                     --*-----------------*  |                                       
                                          |  |                                       
C                     --*--------*        |  |                                       
                                 |--*     |  |                                       
D                     --*--*     |  |     |  |                                       
                           |-----*  |     |--*                                       
E                     --*--*        |--*  |                                          
                                    |  |  |                                          
F                     --*           |  |  |                                          
                        |-----*     |  |  |                                          
G                     --*     |-----*  |--*                                          
                              |        |                                             
H                     --*-----*        |                                             
                                       |                                             
I                     --*--------------*        

 

Figure 1. Dendrogram obtained with AV1 
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Figure 2. Values of some indexes of validation - AV1  

 

Based on the GK, GKr and P(I2mod) indexes, the most significant partition 

is the partition into two clusters: {A}; { B, C, F, G, E, H, D, I}, one of them 

containing the youngest crustaceans and the other the  remaining crustaceans. 

On the other hand, the STAT and DIF indexes point to a partition into four 

clusters: {A}; { B}; { F, G, E, H, D, C}; { I}, where the groups A and B, of 

younger crustaceans, and the group I, of older crustaceans, remain isolated (see 

Figures 1 and 2). After that, the obtained results were compared with those 

obtained using process 2, and the conclusions were identical. 

4. Conclusion 

The example presented allowed us to illustrate the application of the weighted 

generalised affinity coefficient and the extension of VL methodology to 

classification of this type of data.The weighted generalised affinity coefficient 

for the case of symbolic data and the VL methodology was able to reproduce 

well the properties of the symbolic data analysed. 

-1

0

1

2

3

4

5

6

1 2 3 4 5 6 7

Level

V
al

ue
s 

of
 th

e 
va

lid
at

io
n 

m
ea

su
re

s

STAT

DIF

P(I2mod,S)

GK

GKr



 
 
 
 

Weighted Generalised Affinity Coefficient in Cluster Analysis 
 

 

 
 
 
 

55 

The weighted generalised affinity coefficient is an appropriate resemblance 

measure between elements when there is some degree of overlapping between 

intervals. The only limitation of this coefficient occurs in the case where a great 

number of symbolic objects are described by variables of interval type in which 

intervals that are compared either do not intersect or have intersection equal to 

a single value, causing many values of the local affinity coefficient to be equal 

to zero. 

The validation measures used also proved useful in determination of the 

appropriate number of clusters. 
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