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SUMMARY

Complex Data Analysis is a relatively new field tipmbvides a range of methods for
analysing complex/symbolic data, and can be defagthe extension of standard data
analysis to more complex data tables. There arestejs in Complex or Symbolic Data
Analysis: i) knowledge extraction from large datsdm as in Data Mining; and ii)
application of new tools to the extracted knowledgerder to extend Data Mining to
Knowledge Mining. The weighted generalised affinitgefficient appears to be an
appropriate resemblance measure between elemttistisal data units or variables) in
cases where we deal with complex data from largebdaes. In this work we apply two
different processes to determine values of the tedygeneralised affinity coefficient
in the case where we are dealing with data ungsriteed by variables whose values are
intervals of the real axis.

We present one example concerned with real data @vknown structure) in the field
of Biometry, in which objects are described by Maléa whose values are intervals, in
order to illustrate the effectiveness of Ascenddierarchical Cluster Analysis based on
the weighted generalised affinity coefficient andassical and/or probabilistic
aggregation criteria. In this example, we appliesiethod of validation to identify the
best partitions.

Key words: Cluster Analysis, VL Methodology, Weighted Genied Affinity
Coefficient, Symbolic Data, Measures of Validation.

1. Introduction

Classical data analysis starts with a given numhgrindividuals (often termed
objects, cases, etc.) characterizedpbyariables Y, ..., Y,. Each variable Y



46 A. Sousa, F. Nicolau, H. Bacelar- Nicolau, O. Silva

takes values in an observation spageof possible levels, alternatives or
numbers, and for each individuialthe variable Ytakes just one single value
Y;(k) fromy; which can be denoted by

With the development of computer technology itssiai to record huge sets
of data in large databases, so it is importantitorearize these data in terms of
their underlying concepts. These concepts can belyescribed by a more
complex type of data, called symbolic data (Bocét Biday, 2000).

In a symbolic data table the rows correspond tob®jim objects and the
columns correspond to symbolic variables, which e values as a single
guantitative value, a single categorical value,ed & values or categories
(multivalued variable), an interval, or a set ofues with associated weights.
Thus symbolic data tables may describe heterogesndata, and their cells may
contain data of different types that can be weidlatied linked by logical rules
and taxonomies (Bock and Diday, 2000). Thus, folynal symbolic variable Y
with domain (or range or observation spage)s a mapping E- B defined on
a set E of statistical entities (individuals, cessobjects, ...). Depending on the
specification ofB in terms ofy, symbolic variables can be classified as (Bock
and Diday, 2000):

(i). classical single-valued B=y.
(ii). set-valued ifY(a) Oy is a subset ofy.
(iii). interval if, for all alE, Y(a) =[a,f] is an interval ofy, in the order
established oy.
(iv). multi-valued (categorical or quantitative) if sethved with Y(a) Oy and
Y@@ <, OalE.
(v). modal (probabilistic) with observation spacé, for eacha (1 E, Y(@)=Tg, is

a non-negative measure gnsuch as a frequency distribution, a probability

distribution or a weighting. Ifi, is specified by a histogram, Y is called

a histogram variable. Y is a (bar or) diagram \agaif the observation

spacey is finite andm,is described by a bar diagram.

Symbolic Data Analysis DA is a relatively new field that provides
arange of methods for analysing symbolic data, esd be defined as the
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extension of standard data analysis to symbolia ¢atles (Bock and Diday,
2000). There are two steps in Symbolic Data Analy§IDA): i) knowledge
extraction from large data bases as in Data Minamg] ii) application of new
tools to the extracted knowledge in order to extBata Mining to Knowledge
Mining. The symbolic objects allow us to make a meatatical modelling of
concepts and are used as input and as an exphacatput of an SDA.

An important source of symbolic objects is providgdrelational databases
containing a set of individuals that are distriloLireto some groups. DB2SO is
the part of the Sodas software (Bock and Diday02®¢hich enables a user to
build a set of assertions, one assertion for eastipgof individuals, from data
stored in a relational database. The usual interadtetween the user and
DB2SO includes connection with a database andextiiof individuals
distributed into groups (symbolic objects) by meahsa SQL query. On the
other hand, the symbolic objects can be used toaeleries from a database
and for concept propagation between databases @uatbiday, 2000).

In the case of data sets of (very) high dimensimme of the possible
solutions for their analysis is to find clusterstivese data. Cluster Analysis
(classical and symbolic) aims to construct an gmsite classification either of
the set E of data units or the set Y of variabfesn one given data matrix
(Nxp). As in the classic case, the goal is to obtaimégeneous clusters of
objects in a populatiod® or E, such that objects of the same cluster present
a high similarity and objects of different clustgnesent more dissimilarities.
Some comparison measures between elements, e.g.erGowimilarity
coefficient (Gower, 1971), and the dissimilarityasares of Gowda and Diday
(1991) allow us to apply Hierarchical Cluster Ars$yto data of mixed types.
However, its application is limited to data setswiall dimension. The majority
of Cluster Analysis methods are either too comptelse applied to data sets of
high dimension (e.g. hierarchical methods), or amplemented only for
numerical data (e.g. the k-means method).
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In Section 2 we describe two different processeslétermining values of
the weighted generalised affinity coefficient ir ttase where we deal with data
units described by variables whose values areviateof the real axis.

In Section 3we present the results of an example related to ratal @vith
known structure), obtained using the AHCA of a sgtitbdata matrix whose
symbolic objects are described by variables whadeeg are intervals of the
real axis. In this example, we applied a methodatiflation to identify the best
partitions.

2. Weighted Generalised Affinity Coefficient in Symbolc Cluster
Analysis

Nicolau and Bacelar-Nicolau (1999) proposed theghteid generalised affinity
coefficient for the case in which symbolic objeate described by probability
or frequency distribution vectors, or “some othatadsupport which can be
applied to this type of description, such as histots and variables whose
values are intervals of the real axis” (Nicolau aBacelar-Nicolau, 1999;
Bacelar-Nicolau, 2000, 2002). In particular, if thata units are described by
variables whose values are intervals of the resl, axe can use the following
processes:
Process 1Before calculation of the generalised affinity ffiméent (for the case
of symbolic data), an appropriate relative freqyedistribution is associated
with each of the intervals, thus obtaining a cadifion of theSymbolic Data
Matrix by discretization of the variables of interval éypt is possible to effect
this codification (Sousa, 2005) in the followingywva
Let A=[LinfA, LsupA and B=LinfB, LsupH be two intervals with ranges,
respectivelyAmplAand AmpIB The relative frequency distributions associated
with the intervalsA andB are obtained in the following way:

i) Determination of I=[inters1, inters2] correspondinghe intersection of the

intervals A and B;
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i) Calculation of the frequency distributions of tmgerval A: Let ax1, ax2
and ax3 be three auxiliary real variables and fitedreqA2, freqA3) the
relative frequency distribution associated with ititerval A.

If (LinfA=inters1)then ax1=0and ax1=inters1-min(LinfA, LinfBjf not.
freqAl=ax1l/amplA

ax2=inters2-inters1

fregA2=ax2/amplA

If (LsupA=inters2}hen ax3=0and ax3=max(LsupA, LsupB)-intersknot.
fregA3=ax3/amplA;

iii) Calculation of the frequency distribution assodateith interval B,
according to the algorithm presented in ii).
Once we have obtained the frequency distributionsresponding to the
intervalsA andB, the affinity coefficient is calculated as desedhin Nicolau
and Bacelar-Nicolau (1999), considering that in tase of no intersection
between the two intervals the value of the loceihiy coefficient is 0. In the
case of coincidence of the two intervals or thersggction being a single point,
the value of the local affinity coefficient is 1.
Process 2:Another process consists of working directly witle intervals, in
the following way: Leta andb be two unconstrained Boolean symballgects
(i.e. two symbolic Boolean objects with no logickdpendencies between the
variables), defined in the following way:

a=[y,0A]0,0A]0--0Y, 0A;
b=[v, 08,]O[v, OB,]O-- O], OB, ],

where each variable jYtakes values in the domaiy;, and A, B; are
subsets of/;.

De Carvalho (1994, 1996, 1998a, 1998b) suggestsc#beulation of the
comparison function of each variable;, ¥n the basis of the agreement and
disagreement indexes presented in Table 1, wheeehave defined for each
subset YO y;:
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‘V-‘, thatis the cardinabf Vj,
: if Yj is integernominalor ordinal

ulvi)= _
‘\‘,j —v-‘, thatis the rangeof Vi,
- if Yj is continuousmdvj =[\_/j,v,'] an interval

and c(\)= y;-V; is the complementary set of M the domairy;. In particular,
in this work we assume that the values of eaclabl®iare intervalsf the real

axis.
Table 1. De Carvalho’s agreement/disagreement indices
Agreement Disagreement Total
Agreement @ =p(AnB;j)  B=plAnclB)))  ulA)
Disagreement X = 4(clA )n B;) = plcla)nclB;)) #cla;))
Total (8;) plclB;)) HYy;)
Table 2.Five possible comparison functions
S Comparison function Range Property =0 for =1 for
S a [0, 1] Metric ANB=g A=By
a+B+yx
S 20 [0, 1] Semi metric ANnB=g@  A=By
20+pB+x
S3 a [0, 1] Metric ANnB=g  AEBy
a+2(B+x)
S i a , «a [0, 1] Semi metric AnBE= @ A=By
2la+pB a+yx
S a [0, 1] Semi metric ANB=g A=By
Jla+ ,Bﬂa +)(i

De Carvalho has proposed the comparison functioesepted in Table 2,
which are an extension of the similarity measuresndd for classical binary
variables. Note, in particular, that the functisg is the Ochiai coefficient
(Anderberg, 1973), which coincides with the affndoefficient in the case of
binary variables (Nicolau and Bacelar-Nicolau, 1;9B8celar-Nicolau, 2002).
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From this point on, our approach differs from tb&De Carvalho, essentially
because instead of working with the correspondiisgimhilarity function, d., ,
for example, through the transformatiomt =1-s, we work with the
similarity function, in this case, the measwge Thus, the similarity measure
between the symbolic objeasandb is given by:

s(a,b)zészs(Ai,Bj).

Let E= {1, 2,..., N}be a set oN data units described by a set {Y., Y;,...,
Y} of p symbolic variables. The data units can be eitimaple elements (e.g.
subjects, individuals) or subsets of objects in s@mpulation (e.g., subsamples
of a sample, classes of a partition, subgroupshef gopulation) (Bacelar-
Nicolau, 2000).

Given a proximity matrix between symbolic objeat®ssifications of them
can be obtained using classical agglomerative iihgos (Diday, 1988; Gowda
and Diday, 1991, 1992), like Single Linkadgljand Complete LinkageC().

In this approach, having obtained a proximity mabetween the elements Bf
the classification is obtained without attentionttee fact that the data are
symbolic (Gordon, 1999). The clustering of symbalata can be also based on
probabilistic algorithms. In particular, the probatic approach of AHCA,
called VL methodology (V folalidity, L for Linkagg, can be used (Bacelar-
Nicolau, 2002; Sousa, 2005). Tag coefficient combined with the AVL, AV1,
AVB and AVM methods (Bacelar-Nicolau, 1988; Nicoldi980; Nicolau and
Bacelar-Nicolau, 1998) are good examples of thig@gch.

3. Example: “Abalone Data”

The data set analyzed is calledbalone datad and contains 4177 cases of
marine crustaceans, which are described by meantheofnine attributes
(Malerba et al., 2001) listed in Table 3. Initiallysing theDB2S0 facility
available in the SODAS softwarenine boolean symbolic objects were
generated, each of which corresponds to an intefvwehlues for the number of
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rings of the crustacean&:(1-3), B (4-6), C (7-9), D (10-12), E (13-15)(¥6-
18), G (19-21), H (22-24), | (25-29%0r each of the groups we considered 7
symbolic variables(“Length”, “Diam.”, “Height”, “Whole”, “Shucked;
“Viscera”, “Shell”) of interval type (see Table 4).

Table 3. Attributes of the “Abalone” data set

Attribute Name Data Type Unit Description
Sex Nominal M. F. I. (Infant)
Length Continuous mm Longest shell measurement
Diameter Continuous mm Perpendicular to length
Height Continuous mm Measured with meat in shell
Whole weight Continuous grams Weight of the whdielane
Shucked weight Continuous grams Weight of the meat
Viscera weight Continuous grams Gut weight afteeding
Shell weight Continuous grams Weight of the drikdlls
Rings Integer Number of rings

Table 4.Symbolic data matrix

Sex Length Diam. Height Whole Shucked Viscera  Shell

A M(0.18), [0.08: [0.05. [0.01: [0.00: [0.00: [0.00: [0.00:
1(0.82) 0.24] 0.17]  0.06] 0.077  0.03] 0.01] 0.02]

B M(0.10), [0.13:  [0.09: [0.00:  [0.01:  [0.00: [0.00: [0.00:
F(0.05), 0.66] 0.47]  0.18] 1.37]  0.64] 0.29] 0.35]
1(0.85)

C  M(0.32), [0.20:  [0.16: [0.00:  [0.04: [0.02: [0.01: [0.02:
F(0.25), 0.75] 0.58]  1.13] 2.33] 1.25] 0.54] 0.56]
1(0.43)

D M(0.46), [0.29: [0.22: [0.06: [0.12:  [0.04: [0.02: [0.04:
F(0.41), 0.78] 0.63]  0.51] 2.78]  1.49] 0.76] 0.73]
1(0.13)

E  M(0.46), [0.32: [0.25: [0.08: [0.16:  [0.06: [0.03: [0.05:
F(0.43), 0.81] 0.65]  0.25] 2.55] 1.35] 0.57] 0.80]
1(0.11)

F  M(0.44), [0.40:  [0.31: [0.10:  [0.35:  [0.11: [0.06: [0.12:
F(0.45), 0.77] 0.60]  0.24] 2.83] 1.15] 0.48] 1.00]
1(0.11)

G M(0.46), [0.45: [0.35: [0.12: [0.41: [0.11: [0.07: [0.16:
F(0.47), 0.74] 0.59]  0.23] 2.13]  0.87] 0.49] 0.85]
1(0.07)

H M(0.41), [0.45:  [0.38: [0.14: [0.64: [0.16: [0.11: [0.24:
F(0.59) 0.80] 0.63]  0.22] 2531  0.93] 0.59] 0.71]

I M(0.40), [0.55:  [0.47: [0.18: [1.06: [0.32: [0.19: [0.38:

F(0.60) 070] 058 0.22] 218] 0.75] 0.39] 0.88]
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Two abalones with the same number of rings sholdd present similar
values for the attributes listed in Table 3. On llasis of this assumption, we
hope that the degree of dissimilarity between crustaceanspeted on the
independent attributes will actually be proportidria the dissimilarity in the
dependent attribute (i.e., difference in the numbkringy” (Malerba et al.,
2001). This property is calledrfonotonic increasing dissimilarity{shortly,
MID property).

After determining the frequency distributions cepending to the intervals
of the initial matrix of data, according to processwe used the weighted
generalised affinity coefficient (Nicolau and BaeNicolau, 1999; Bacelar-
Nicolau, 2002) Withpjj’ =1/p if j5f" and pjj’ =0 if j4’ (Nicolau and Bacelar-
Nicolau, 1999). This measure of comparison betwetsments has been
combined with classical, SL and CL, and probaldlistggregation criteria,
AVL, AV1 and AVB (Bacelar-Nicolau, 1988; Nicolau,980; Nicolau and
Bacelar-Nicolau, 1998).

Figure 2 contains the graph of the values of thdexies STAT DIF,
P(12mod2), GK and GKr (Sousa, 2005)r the partitions provided by th&v1
method. Figure 1 presents the corresponding derairog
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Figure 1. Dendrogram obtained with AV1
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Figure 2. Values of some indexes of validation - AV1

Based on th&K, GKr andP(I2mod)indexes, the most significant partition
is the partition into two clustersAf; { B, C, F, G, E, H, D, I}, one of them
containing the youngest crustaceans and the dtieerremaining crustaceans.
On the other hand, th8TAT andDIF indexes point to a partition into four
clusters: f}; {B}; {F, G, E, H, D, C}; {1}, where the groups A and B, of
younger crustaceans, and the group I, of oldetateans, remain isolated (see
Figures 1 and 2). After that, the obtained resulése compared with those
obtained using process 2, and the conclusions \engical.

4. Conclusion

The example presented allowed us to illustrateagh@ication of the weighted
generalised affinity coefficient and the extensioh VL methodology to
classification of this type of data.The weightedhemlised affinity coefficient
for the case of symbolic data and te methodology was able to reproduce
well the properties of the symbolic data analysed.
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The weighted generalised affinity coefficient isawpropriate resemblance
measure between elements when there is some defgoserlapping between
intervals. The only limitation of this coefficientcurs in the case where a great
number of symbolic objects are described by vaembf interval type in which
intervals that are compared either do not intereettave intersection equal to
a single value, causing many values of the lodatiaf coefficient to be equal
to zero.

The validation measures used also proved usefdletermination of the
appropriate number of clusters.
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